Copernicus is said to be the founder of modern astronomy. His observations were the first to place the sun, not the Earth, at the center of what is now known as the solar system. By 1514, at the behest of the Catholic church, he was involved in working to improve the calendar and in 1530 produced a major piece of research, De Revolutionibus Orbium Coelestium (On the Revolutions of the Celestial Spheres).
Nicolaus Copernicus was born on 19 February 1473, the youngest of four children of Nicolaus Copernicus, Sr., a well-to-do merchant who had moved to Torun from Cracow, and Barbara Watzenrode, the daughter of a leading merchant family in Torun. The city, on the Vistula River, had been an important inland port in the Hanseatic League. However, fighting between the Order of the Teutonic Knights and the Prussian Union in alliance with the Kingdom of Poland ended in 1466, and West Prussia, which included Torun, was ceded to Poland, and Torun was declared a free city of the Polish kingdom. Thus the child of a German family was a subject of the Polish crown.
The father died in 1483, and the children's maternal uncle, Lucas Watzenrode (1447–1512), took them under his protection. Watzenrode was a very successful cleric — he was to become bishop of Warmia (Ermland in German) in 1489 — and he both facilitated his nephew's advancement in the church and directed his education. In 1491 Copernicus enrolled in the University of Cracow. There is no record of his having obtained a degree, which was not unusual at the time as he did not need a bachelor's degree for his ecclesiastical career or even to study for a higher degree. But the University of Cracow offered courses in mathematics, astronomy, and astrology and Copernicus's interest was sparked, which is attested to by his acquisition of books in these subjects while at Cracow.
Astrology was taught in the medical schools of Italy. “The importance attached to the study of the stars in medieval medical education derived from a general and widely held belief that the heavenly bodies play an intermediary role in the creation of things here below and continue to influence them throughout their existence. The actual uses of astrology in medical diagnosis and treatment by learned physicians were many and various. ‘Astrological medicine’ is a vague and unsatisfactory term that can embrace any or all of the following: first, to pay attention to the supposed effect of astrological birth signs or signs at conception on the constitution and character of one's patients; second, to vary treatment according to various celestial conditions…third, to connect the doctrine of critical days in illness with astrological features, usually phases of the moon; and fourth, to predict or explain epidemics with reference to planetary conjunctions, the appearance of comets, or weather conditions”. It is true that astrology required that medical students acquire some grounding in astronomy; nevertheless, it is likely that Copernicus studied astrology while at the University of Padua.
Copernicus began to work on astronomy on his own. Sometime between 1510 and 1514 he wrote an essay that has come to be known as the Commentariolus that introduced his new cosmological idea, the heliocentric universe, and he sent copies to various astronomers. He continued making astronomical observations whenever he could, hampered by the poor position for observations in Frombork and his many pressing responsibilities as canon. Nevertheless, he kept working on his manuscript of On the Revolutions. He also wrote what is known as Letter against Werner in 1524, a critique of Johann Werner's “Letter concerning the Motion of the Eighth Sphere” (De motu octavae sphaerae tractatus primus). Copernicus claimed that Werner erred in his calculation of time and his belief that before Ptolemy the movement of the fixed stars was uniform, but Copernicus's letter did not refer to his cosmological ideas.
In 1539 a young mathematician named Georg Joachim Rheticus (1514–1574) from the University of Wittenberg came to study with Copernicus. Rheticus brought Copernicus books in mathematics, in part to show Copernicus the quality of printing that was available in the German-speaking cities. He published an introduction to Copernicus's ideas, the Narratio prima (First Report). Most importantly, he convinced Copernicus to publish On the Revolutions. Rheticus oversaw most of the printing of the book, and on 24 May 1543 Copernicus held a copy of the finished work on his deathbed.
Copernicus died in 1543 and was never to know what a stir his work had caused. It went against the philosophical and religious beliefs that had been held during the medieval times. Man, it was believed (and still believed by some) was made by God in His image, man was the next thing to God, and, as such, superior, especially in his best part, his soul, to all creatures, indeed this part was not even part of the natural world (a philosophy which has proved disastrous to the earth's environment as any casual observer of the 20th century might confirm by simply looking about). Copernicus' theories might well lead men to think that they are simply part of nature and not superior to it and that ran counter to the theories of the politically powerful churchmen of the time.
Two other Italian scientists of the time, Galileo and Bruno, embraced the Copernican theory unreservedly and as a result suffered much personal injury at the hands of the powerful church inquisitors. Giordano Bruno had the audacity to even go beyond Copernicus, and, dared to suggest, that space was boundless and that the sun was and its planets were but one of any number of similar systems: Why! -- there even might be other inhabited worlds with rational beings equal or possibly superior to ourselves. For such blasphemy, Bruno was tried before the Inquisition, condemned and burned at the stake in 1600. Galileo was brought forward in 1633, and, there, in front of his "betters," he was, under the threat of torture and death, forced to his knees to renounce all belief in Copernican theories, and was thereafter sentenced to imprisonment for the remainder of his days.
The most important aspect of Copernicus' work is that it forever changed the place of man in the cosmos; no longer could man legitimately think his significance greater than his fellow creatures; with Copernicus' work, man could now take his place among that which exists all about him, and not of necessity take that premier position which had been assigned immodestly to him by the theologians.
His long-lost skeleton was located in 2005 under floor tiles near one of the side altars in the 14th-century Roman Catholic cathedral in Frombork. Forensic detective work has successfully matched DNA samples recovered from remains in a cathedral grave with hairs retrieved from a book the scholar priest is known to have owned.
The identification is the culmination of four years of investigation and centuries of speculation about the final resting place of the man who challenged the Bible and medieval teachings of the church.
Further Reading Material:
http://www.newworldencyclopedia.org/entry/Nicolaus_Copernicus
http://www.phy.pmf.unizg.hr/~dpaar/fizicari/xcopern.html
http://www.biography.com/people/nicolaus-copernicus-9256984
No comments:
Post a Comment